
Features and Future of Open Sound Control version 1.1 for NIME
Adrian Freed, Andy Schmeder

Center for New Music and Audio Technologies
Department of Music

University of California, Berkeley
1750 Arch Street

Berkeley, CA 94720
{adrian,andy}@cnmat.berkeley.edu

Abstract
The history and future of Open Sound Control (OSC) is
discussed and the next iteration of the OSC specification is
introduced with discussion of new features to support
NIME community activities. The roadmap to a major
revision of OSC is developed.

Keywords: Open Sound Control, Time Tag, OSC,
Reservation Protocols.

1. Introduction
After a brief survey of the history of Open Sound

Control (OSC) we introduce the next iteration of the
standard, OSC 1.1, describing new features of interest to
the NIME community. We conclude by charting the
immediate future of OSC and proposing a new roadmap
for its evolution.

2. History and a basis for the Future
In 1997 Wright and Freed introduced Open Sound Control
as:

“a new protocol for communication among
computers, sound synthesizers, and other
multimedia devices that is optimized for modern
networking technology. Entities within a system are
addressed individually by an open-ended URL-style
symbolic naming scheme that includes a powerful
pattern matching language to specify multiple
recipients of a single message. We provide high
resolution time tags and a mechanism for specifying
groups of messages whose effects are to occur
simultaneously” [26]

Initially this protocol just represented recommended and

actual practice at CNMAT but its use rapidly spread during
the period of explosive growth of the internet as it was
implemented in an increasing number of core music and

media software development environments.

2.1 OSC 1.0 Specification
In 2002 the Open Sound Control 1.0 specification was

published on CNMAT’s website. This specification
integrated important ideas proven in actual use by users
with weaker original ideas expunged. The key addition of
type tags enabled OSC messages to be completely self-
describing. OSC addresses, type tags, and bundles together
are powerful enough mechanisms for OSC to enable
dynamic delegation-style object oriented programming [2,
14]

OSC is used extensively in the NIME community as a
way to rapidly build ad-hoc encodings for new gestural
controllers, for control structure programming [27], and
also as a basis for new protocols such as TUIO [11] for
multitouch surfaces and GDIF [10] for gestural data
interchange.

Although never envisaged as a “standard” in the style of
those created by committees of professional organizations
such as the IEEE, AES or trade associations such as the
MMA, many users refer to the OSC specification as a
standard and the word snuck several times into our own
OSC survey paper of 2003 [28].

2.2 OSC Conference 2004
In 2004 CNMAT hosted a conference on OSC bringing

together many users and developers from around the
world. Although no formal meetings were held to
standardize OSC we polled the community for directions
for the future of OSC and several presentations were
directed specifically at exposing OSC weaknesses and
exploring new mechanisms that are regularly needed in
OSC applications, e.g. discovery, a query system [17], and
a viable scheme for OSC time tags. [8].

2.3 Advances in practical use of time tags
A striking problem with OSC discussed at the 2004 OSC
conference was that one of OSC’s most important and
interesting features had not been widely or correctly
implemented: time tags. This was addressed in 2008 with
the public release of a complete OSC implementation with
time tag scheduling on two very different platforms -

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or a fee.
NIME09, June 3-6, 2009, Pittsburgh, PA
Copyright remains with the author(s).

within Cycling74 Max/MSP on Mac OS/X [16] and on a
cheap (US$25) microcontroller board [17].

2.4 Looking forward: OSC 1.1
OSC’s status as a standard can now be envisaged

because complete implementations such as micro-OSC
can be used to build interoperability and conformance
testing tools [25]. Although neither the resources nor
formal structure are currently in place to carry OSC
forward as a standard, we have decided to update the OSC
1.0 specification to provide a stronger basis to build on–
one that reflects 6 more years of experience from users,
especially uses in the NIME community for representing
and communicating performance gestures.

Most criticisms of OSC address errors of omission [6]:
things they wish OSC would do that it doesn’t. We have
chosen not to address most of these in this effort and defer
them to OSC 2.0, for which a roadmap is suggested in
Section 7 of the paper.

3. What’s New in OSC 1.1
The basic encoding format has not changed between OSC
1.0 and 1.1 so that well-formed OSC messages from 1.0
implementations will still work when processed by 1.1
implementations. The changes include clarifications
regarding the role of OSC in application architectures,
more specific recommendations for optional features, new
data types and a small but import change to the pattern
matching syntax.

3.1 OSC is a content format
OSC is often referred to as a protocol, but it is only a
protocol in the weakest sense in that it defines a message
format—it does not define typical features of protocols
such as processing semantics (e.g. command-response
patterns), error handling or negotiation. It is more accurate
to describe OSC as a content format. This means that OSC
can be viewed and compared with other formats such as
XML [21], WDDX [18] or JSON [4]. An application that
uses OSC only guarantees compatibility with OSC
parsers/formatters. Inter-application protocols are of course
possible using OSC as the underlying format, but the
syntax and semantics of those interfaces are beyond the
scope of the OSC specification. Similar to the role of
WSDL and XML Schema in web services, we expect
systems for service enumeration, eventing, security and
choreography to be defined as higher-level protocols that
use OSC as a base format or another format such as XML.

3.2 Transport and delivery clarifications
In the 1.1 specification [7] we have factored out the parts
of the 1.0 specification that refer to delivery mechanisms.
These have been changed and expanded to reflect common
practice and are explained in Section 4.

3.3 Stream meta-data
Once OSC messages are understood as content format
encodings we can clarify OSC’s role in service definition
and discovery. This is elaborated in section 5.

3.4 A path-traversing wildcard
OSC 1.1 inherits the path multiple-level wildcard-
matching operator ‘//’ from XPath [23]. This overcomes
the limitation of the OSC 1.0 ‘*’ operator that only
matches up to ‘/’ boundaries. It also gives concrete
semantics to the string ‘//’ in an address—which was
previously not explicitly forbidden but may have resulted
in inconsistent address handling due to ambiguity (e.g., in
UNIX style path operations ‘//’ is a no-op equivalent to
‘/’).

The ‘//’ operator enables matching across disparate
branches of the address tree and at any depth as illustrated
in Figure 1.

Figure 1: Address Pattern Hierarchy

This allows for some useful and interesting applications
that transform OSC messages such as one that transforms
OSC parameters between different units of measure, e.g.

/position/spherical (r theta phi)

is matched by the pattern //spherical to drive the
transformation to:

 /position/cartesian (x y z)

3.5 New types and recommended optional types

3.5.1 OSC 1.0 required types remain
The 1.0 specification describes four required standard

types: integer, float, string and blob, identified by the type-
tags ‘i’, ‘f’, ‘s’ and ‘b’. These are still required in OSC
1.1.

3.5.2 OSC 1.1 required types
The 1.1 specification moves some types previously
specified as optional into the required list resulting in the
following (Table 1):

i Integer: two’s complement int32
f Float: IEEE float32
s NULL-terminated ASCII string
b Blob, (aka byte array) with size
T True: No bytes are allocated in the argument data.
F False: No bytes are allocated in the argument data.
N Null: (aka nil, None, etc). No bytes are allocated in

the argument data.
I Impulse: (aka “bang”), used for event triggers. No

bytes are allocated in the argument data. This type
was named “Infinitum” in OSC 1.0 optional types.

t Timetag: an OSC timetag in NTP format, encoded in
the data section

Table 1
Support of these new types is the biggest burden the 1.1

imposes on OSC 1.0 implementers. Care was taken to
select types that are broadly useful, easy to implement with
all popular programming environments and that are
actually tested extensively in real applications.

The True, False, Null and Impulse/bang types are useful
for efficiently communicating bit strings, empty arguments
and events, a very common scenario in robotic control, in
gestural interfaces and bit twiddling for hardware
development.

The OSC-timetag type is primarily used to build time
synchronization protocols on top of OSC [15].

3.5.3 OSC 1.1 recommended and legacy optional types
We have added more optional reserved types including

ways to describe complex numbers, double precision
floating point, matrices, vectors and units qualification.
These may be found in the specification and are omitted
here in the interests of brevity.

3.6 Time Tag Semantics
When time tags were first introduced in OSC we expected
they would be easy to implement. Unfortunately the
availability to us of the required real-time features in Mac
OS 9.1 and SGI IRIX turned out to be short-lived and no
desktop operating system has been available since this time
that can provide end-to-end communications latency
guarantees and controlled, low jitter. We have confirmed

the viability of the time tag semantics using a particular
configuration of applications software, operating system
and microcontroller. We also have discovered [8] that the
OSC 1.0 semantics are not very useful for the common
case of unidirectional OSC messaging. This is because the
sender of OSC messages cannot know how far ahead in
time to schedule OSC messages because it cannot learn of
the network latency statistics seen by the receiver.

Three different and mutually incompatible uses of
timetags have been employed over the years: the one
outlined in the OSC 1.0 specification where the sender
time tags messages to execute in the future by the receiver,
one where the sender time tags messages to its own private
clock to reflect in when events happened (e.g. when
gesture data was acquired) and the third most common
case where time tags are simply ignored and all message
processing is “immediately on receipt”.

Instead of outlawing these or other future scenarios we
have decided to embrace all of them by simply not
specifying time tag semantics at all in OSC 1.1. The
specification simply provides a place in the stream for a
time-tag, defines units for it and we still require that the
least significant bit is reserved to mean "immediately".

4. OSC Delivery Specification 1.1
OSC messages may be sent directly without the need for
framing in message oriented protocols such as UDP or
MPI. Stream-oriented protocols such as TCP and serial
byte streams need a framing mechanism to establish
message boundaries. These streams are now required to
employ SLIP (RFC1055) with a double END character
encoding. This choice has been used extensively for years
on the Make Controller board and in our micro-OSC work
and we have established its efficiency and superiority over
the OSC 1.0 size-count-preamble recommendation when
recovering from damaged stream data.

This new specification enormously expands the range of
protocols and hardware transports that can be used to
communicate OSC encoded packets including Firewire,
Ethernet, and USB (using TCP/IP); RS232 and RS422 and
Serial USB and Serial Bluetooth and Serial Zigbee. USB
support is especially important for the NIME community
as USB provides power to remote devices and USB is
currently the primary for connecting gesture controllers to
computers. Serial USB is faster than the USB HID
protocol typically used by such devices and with careful
jitter management good enough for musical expressivity
[15].

5. OSC stream meta-data: integration with
discovery services and content handlers
It surprises new users of OSC to find out that no standard
port for OSC is registered with the IANA and there is no
OSC service registered in the usual places such as DNS-
SD [3]. The reason why is easier to understand now that
OSC is specified as a content format: OSC doesn’t specify

service content or behavior, it is just a format for clients
and servers to exchange data in to implement custom
service behavior.

5.1 Specification of OSC stream meta-data
Content-format and protocol descriptions typically include
a method for specification of optional parameters. We
define a small number of meta-data keys appropriate to
OSC streams, listed in Table 4:

version OSC version support; 1.0 or 1.1
framing Set to “slip” for serial transports, else omit
uri Indicates a URI to identify the service running

behind the endpoint or the source that
generated the data stream

types A string containing all the type-tag symbols
supported by the endpoint/present in the stream

Table 4

5.2 Discovery with DNS-SD
Services available over IP networks can be located with
DNS-SD (aka Zeroconf). These may be listed as protocol
_osc._udp or _osc._tcp (with reservations, users may wish
to register their own protocol that simply uses OSC). The
attributes given in Table 4 are specified in the TXT field
for DNS-SD, e.g. suppose we have a bidirectional endpoint
over TCP at port 5000:

_osc._tcp.localhost:5000
txtvers=1
version=1.1
framing=slip
uri=http://myapp.com/
types=ifsbhdu

5.3 IANA Mime Type Header for OSC data
As a practical means to store OSC data in files, we
consider the file pointer to be a serial transport (thus,
needing SLIP framing), and define the following IANA
MIME content-type header:

MIME-Version: 1.0
Content-type: application/osc;
 framing=slip
 version=1.0 | 1.1
 uri=http://foobar
 types=ifsbhdu

5.4 Tunneling in USB Endpoints
For the transport of OSC streams through USB endpoints,
we recommend putting the IANA MIME content type into
the iInterface descriptor string for the interface containing
the relevant endpoints as defined in chapter 9 of the USB
2.0 specification [19].

6. Documentation Requirement
The most unusual new requirement of OSC 1.1 is that
applications and services that wish to embed the term OSC
in their name or advertise Open Sound Control
compatibility are free to do so providing they register their
applications at http://opensoundcontrol.org. Registration
takes a few minutes and benefits the OSC community
immensely by avoiding duplication of effort and fostering
further collaboration. This is a pragmatic compromise
because there is no structure in place to formally qualify
OSC implementations.

7. After OSC 1.1: a roadmap for OSC 2.0
In the next few years new, strong industry standards
foundations will be built into the core infrastructure of
operating systems, routers and processor and
communications chips. We therefore envisage future work
on OSC 2.0 should be a fresh start, a community
collaboration and built wherever possible on existing
standards.

7.1 Organizational Structure
OSC 1.1 was developed and asserted using the same

structure that brought OSC originally to light: a benevolent
dictatorship. OSC is now used so far beyond its narrow
beginnings in sound synthesis control that this structure
will soon have to be replaced by an organization able to
integrate uses and ideas in robotics, web services, audio,
music, and video and other control services.

7.2 A New Name?
The name and acronym should be changed to reflect its use
in open systems control not just open sound control.

7.3 Building on Existing and Emerging Standards
In the short time OSC has existed we have experienced

a rapid shift from a period of scarcity of applicable ideas
and standards to build on to an overwhelming abundance.
In the spirit of promoting collective understand rather than
guiding a particular choice we present the following list of
OSC features – extant and desired with a few
corresponding existing and emerging standards that may
be drawn from.

Time tag encoding TAI64N [1]
Transport QoS Ethernet AVB [9]
Time Synchronization IEEE1588-2008 [12]
Query System WSDL, WS-*
Wireless efficiency WBXML [22]
Address Patterns XPath [23]
Dictionaries, Attributes
and Type Specification

XML-Schema-Instance [24]

Measurement units SensorML [13]
Message semantics XML-RPC, SOAP, REST [5]
Lightweight
Implementations

EXI [20]

8. Acknowledgments
Thanks to our sponsors and partners including Sennheiser,
Starkey, Meyer Sound Labs, Making Things and to the

ongoing enthusiasm and energy reflected in the OSC
developer group and OSC users.

References

[1] BIPM International Atomic Time. 2009.

http://www.bipm.org/en/scientific/tai/tai.html.
[2] Chaudhary, A., Freed, A. and Wright, M., An Open

Architecture for Real-time Music Software. in
International Computer Music Conference, (Berlin,
Germany, 2000), International Computer Music
Association, 492-495.

[3] Cheshire, S. DNS Service Discovery (DNS-SD). 2009.
http://www.dns-sd.org/.

[4] Crockford, D. JSON: Javascript Object Notation. 2009.
http://www.json.org/.

[5] Fielding, R.T. Architectural styles and the design of
network-based software architecturesThesis University of
California, Irvine 2000.

[6] Fraietta, A. Open Sound Control: Constraints and
Limitations NIME, nime.org, Genova, 2008.

[7] Freed, A. Open Sound Control 1.1 Specification. 2009.
http://opensoundcontrol.org/spec-1_1.

[8] Freed, A. Towards a More Effective OSC Time Tag
Scheme Open Sound Control Conference, CNMAT,
Berkeley, CA, 2004.

[9] Garner, G.M., Feifei, F., den Hollander, K., Hongkyu, J.,
Byungsuk, K., Byoung-Joon, L., Tae-Chul, J. and Jinoo, J.
IEEE 802.1 AVB and Its Application in Carrier-Grade
Ethernet [Standards Topics]. Communications Magazine,
IEEE, 45 (12). 126-134.

[10] Jensenius, A.R., Kvifte, T. and Godøy, R.I. Towards a
gesture description interchange format 2006 conference on
New interfaces for musical expression (NIME), IRCAM,
Centre Pompidou, Paris, France, 2006.

[11] Kaltenbrunner, M., Bovermann, T., Bencina, R. and
Costanza, E. TUIO: A protocol for table-top tangible user
interfaces 6th International Workshop on Gesture in
Human-Computer Interaction and Simulation, 2005.

[12] NIST Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control
Systems

[13] . 2008. http://ieee1588.nist.gov/.
[14] OGC Sensor Model Language (SensorML). 2009.

http://www.opengeospatial.org/standards/sensorml.
[15] Peters, N., Baltazar, P., Place, T., T, L. and Jensenius,

A.R. Addressing Classes by Differentiating Values and
Properties in OSC International Conference on New
Interfaces for Musical Expression (NIME), Genova, 2008

[16] Schmeder, A. and Freed, A. Implementation and
Applications of Open Sound Control Timestamps ICMC,
ICMA, Belfast, Ireland, 2008.

[17] Schmeder, A. and Freed, A. uOSC: The Open Sound
Control Reference Platform for Embedded Devices NIME,
Genova, Italy, 2008.

[18] Schmeder, A. and Wright, M. A Query System for Open
Sound Control OpenSoundControl Conference, CNMAT,
Berkeley, CA, 2004.

[19] Simeonov, S. WDDX (Web Distributed Data eXchange)
1998. http://www.openwddx.org/.

[20] usb.org USB 2.0 Specification.
[21] w3.org Efficient XML Interchange Working Group. 2008.

http://www.w3.org/XML/EXI/.
[22] w3.org Extensible Markup Language (XML). 2008.

http://www.w3.org/XML/.
[23] w3.org WAP Binary XML Content Format. 1999.

http://www.w3.org/TR/wbxml/.
[24] w3.org XML Path Language (XPath). 1999.

www.w3.org/TR/xpath.
[25] w3.org XML-Schema-Instance. 2004.

http://www.w3.org/TR/xmlschema-1/.
[26] Wright, M., Dannenberg, R., Pope, S., Rodet, X., Serra, X.

and Wessel, D. Panel: Standards from the Computer
Music Community International Computer Music
Conference, International Computer Music Association,
Miami, FL, 2004.

[27] Wright, M. and Freed, A., Open Sound Control: A New
Protocol for Communicating with Sound Synthesizers. in
International Computer Music Conference, (Thessaloniki,
Hellas, 1997), International Computer Music Association,
101-104.

[28] Wright, M., Freed, A., Lee, A., Madden, T. and Momeni,
A., Managing Complexity with Explicit Mapping of
Gestures to Sound Control with OSC. in International
Computer Music Conference, (Habana, Cuba, 2001),
International Computer Music Association, 314-317.

[29] Wright, M., Freed, A. and Momeni, A., Open Sound
Control: State of the Art 2003. in International
Conference on New Interfaces for Musical Expression,
(Montreal, 2003), 153-159.

